References

  1. Musabayane C, Windle R, Forsling M, Balment R. Arginine vasopressin mediates the chloroquine induced increase in renal sodium excretion. Trop Med Int Health. 1996; 1(4): 542-50. PubMed | Google Scholar

  2. Cooper R, Magwere T. Chloroquine: novel uses & manifestations. Indian J Med Res. 2008; 127(4): 305-16. PubMed | Google Scholar

  3. Musabayane CT, Cooper RG, Rao PVVP, Balment RJ. Effects of ethanol on the changes in renal fluid and electrolyte handling and kidney morphology induced by long-term chloroquine administration to rats. Alcohol. 2000; 22(3): 129-38. PubMed | Google Scholar

  4. Krafts K, Hempelmann E, Skórska-Stania A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol Res. 2012; 111(1): 1-6. PubMed | Google Scholar

  5. Slater AF. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmac Ther. 1993; 57(2): 203-35. PubMed | Google Scholar

  6. Rainsford K, Parke AL, Clifford-Rashotte M, Kean W. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacol. 2015; 23(5): 231-69. PubMed | Google Scholar

  7. Savarino A. Use of chloroquine in viral diseases. Lancet Infect Dis. 2011; 11(9): 653-4. PubMed | Google Scholar

  8. Savarino A, Lucia MB, Giordano F, Cauda R. Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol. 2006; 7(10): 792-3. PubMed | Google Scholar

  9. Oluleye T, Babalola Y, Ijaduola M. Chloroquine retinopathy: pattern of presentation in Ibadan, Sub-Sahara Africa. Eye(Lond). 2016 Jan; 30(1): 64-7. PubMed | Google Scholar

  10. Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003; 187(12): 1870-5. PubMed | Google Scholar

  11. Laufer MK, Thesing PC, Eddington ND, Masonga R, Dzinjalamala FK, Takala SL et al. Return of chloroquine antimalarial efficacy in Malawi. N Engl J Med. 2006; 355(19): 1959-66. PubMed | Google Scholar

  12. Pisa PT, Loots DT, Nienaber C. Alcohol metabolism and health hazards associated with alcohol abuse in a South African context: a review: review article. S Afr J Clin Nutr. 2010; 23(3): 4-10. Google Scholar

  13. Zakhari S. Overview: how is alcohol metabolized by the body. Alcohol Res Health. 2006; 29(4): 245-55. PubMed | Google Scholar

  14. Abdellatif AM, Hassan Y. Effects of Uninephrectomy on Morphological and Histological Measurements of the Remnant Kidney in a Goat (Capra hircus) Model. J Phys Pharm Adv. 2013; 3(3): 94-102. Google Scholar

  15. Yamashita SR, Atzingen ACv, Iared W, Bezerra ASdA, Ammirati AL, Canziani MEF, et al. Value of renal cortical thickness as a predictor of renal function impairment in chronic renal disease patients. Radiol Bras. 2015; 48(1): 12-6. PubMed | Google Scholar

  16. Almajdub M, Magnier L, Juillard L, Janier M. Kidney volume quantification using contrast-enhanced in vivo X-ray micro-CT in mice. Contrast Media Mol Imaging. 2008; 3(3): 120-6. PubMed | Google Scholar

  17. Nyengaard JR. Stereologic methods and their application in kidney research. J Am Soc Nephrol. 1999; 10(5): 1100-23. PubMed | Google Scholar

  18. Al-kahtani MA, Zuleta C, Caviedes-Vidal E, Garland Jr T. Kidney mass and relative medullary thickness of rodents in relation to habitat, body size and phylogeny. Physiol Biochem Zool. 2004; 77(3): 346-65. PubMed | Google Scholar

  19. Tejo Riquelme PA, Diaz Isenrath GB, Andino N, Borghi CE. Renal intraspecific variation along an aridity gradient detected by new renal indices in a desert herbivorous rodent. J Exp Zool. 2014; 321(6): 348-56. PubMed | Google Scholar

  20. Yang B, Bankir L. Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol. 2005; 288(5): F881-F96. PubMed | Google Scholar

  21. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012; 9(7): 671-5. PubMed | Google Scholar

  22. Merzin M. Applying stereological method in radiology. Volume measurement: University of Tartu, Estonia. 2008. Google Scholar

  23. Albay D, Adler SG, Philipose J, Calescibetta C, Romansky SG, Cohen AH. Chloroquine-induced lipidosis mimicking Fabry disease. Mod Pathol. 2005; 18(5): 733-8. PubMed | Google Scholar

  24. Singh VP, Singh N, Jaggi AS. A review on renal toxicity profile of common abusive drugs. Korean J Physiol Pharmacol. 2013; 17(4): 347-57. PubMed | Google Scholar

  25. Assadi FK, Manaligod JR, Fleischmann LE, Zajac CS. Effects of prenatal ethanol exposure on postnatal renal function and structure in the rat. Alcohol. 1991; 8(4): 259-63. PubMed | Google Scholar

  26. Ahmed MH, Osman MM. Why does chloroquine impair renal function: Chloroquine may modulate the renal tubular response to vasopressin either directly by inhibiting cyclic AMP generation, or indirectly via nitric oxide. Med Hypotheses. 2007; 68(1): 140-3. PubMed | Google Scholar