References

  1. Gallo RC, Sarin PS, Gelmann EP et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome. Science. 1983; 220(4599):865-867. PubMed | Google Scholar

  2. UNAIDS Global Report on Global AIDS Epidemic. 2012; World Health Organization, Geneva. Google Scholar

  3. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009; 361(23):2209–2220. PubMed | Google Scholar

  4. Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine. 2003; 21 (S2):S68-S76. PubMed | Google Scholar

  5. Forthal DN, Landucci G, Daar ES. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effector cells. J Virol. 2001; 75(15):6953-6961. PubMed | Google Scholar

  6. Cocchi F, DeVico AL, Lu W et al. Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of ? chemokines and RNases. Proc Natl Acad Sci U S A. 2012; 109(14):5411-5416. PubMed | Google Scholar

  7. Giavedoni LD, Velasquillo MC, Parodi LM, et al. Cytokine expression, natural killer cell activation, and phenotypic changes in lymphoid cells from rhesus macaques during acute infection with pathogenic simian immunodeficiency virus. J Virol. 2000; 74(4):1648-1657. PubMed | Google Scholar

  8. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001; 19:65-91. PubMed | Google Scholar

  9. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006; 124(4):849-863. PubMed | Google Scholar

  10. Yang OO, Walker BD. CD8+ cells in human immunodeficiency virus type I pathogenesis: cytolytic and noncytolytic inhibition of viral replication. Adv Immunol. 1997; 66:273-311. PubMed | Google Scholar

  11. Hadida F, Vieillard V, Mollet L, et al. Cutting edge: RANTES regulates Fas ligand expression and killing by HIV-specific CD8 cytotoxic T cells. J Immunol. 1999; 163(3):1105-1109. PubMed | Google Scholar

  12. McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature. 2001; 410(6831):980-987. PubMed | Google Scholar

  13. Gulzar N, Copeland KF. CD8+ T-cells: function and response to HIV infection. Curr HIV Res. 2004; 2(1):23-37. PubMed | Google Scholar

  14. Walker BD, Chakrabarti S, Moss B, et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987; 328(6128): 345-348. PubMed | Google Scholar

  15. Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol. 2003; 21:265-304. PubMed | Google Scholar

  16. Betts MR, Nason MC, West SM, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006; 107(12):4781-4789. PubMed | Google Scholar

  17. Madden LJ, Zandonatti MA, Flynn CT et al. CD8+ cell depletion amplifies the acute retroviral syndrome. J Neurovirol. 2004; 10 (S1):58-66. PubMed | Google Scholar

  18. Kaul R, Rowland-Jones SL, Kimani J et al. New insights into HIV-1 specific cytotoxic T-lymphocyte responses in exposed, persistently seronegative Kenyan sex workers. Immunol Lett. 2001; 79(1-2):3-13. PubMed | Google Scholar

  19. Allen TM, Altfeld M, Yu XG, et al. Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection. J Virol. 2004; 78(13):7069-7078. PubMed | Google Scholar

  20. Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science. 2001; 292(5514):69-74. PubMed | Google Scholar

  21. Kalams SA, Buchbinder SP, Rosenberg ES, et al. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J Virol. 1999; 73(8):6715-6720. PubMed | Google Scholar

  22. Rosenberg ES, Billingsley JM, Caliendo AM, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997; 278(5342):1447-1450. PubMed | Google Scholar

  23. Emu B, Sinclair E, Favre D et al. Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol. 2005; 79(22):14169-14178. PubMed | Google Scholar

  24. Porichis F, Kaufmann DE. HIV-specific CD4 T cells and immune control of viral replication. Curr Opin HIV AIDS. 2011; 6(3):174-80. PubMed | Google Scholar

  25. Zaunders JJ, Dyer WB, Wang B et al. Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood. 2004; 103(6): 2238–2247. PubMed | Google Scholar

  26. Letvin NL, Walker BD. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med. 2003; 9(7):861-866. PubMed | Google Scholar

  27. Nabel GJ, Sullivan NJ. Antibodies and resistance to natural HIV infection. N Engl J Med. 2000; 343(17): 1263-1265. PubMed | Google Scholar

  28. Gómez-Román VR, Patterson LJ, Venzon D et al. Vaccine-elicited antibodies mediate antibody-dependent cellular cytotoxicity correlated with significantly reduced acute viremia in rhesus macaques challenged with SIVmac251. J Immunol. 2005; 174(4):2185-2189. PubMed | Google Scholar

  29. Moore JP, Cao Y, Ho DD et al. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol. 1994; 68(8):5142-5155. PubMed | Google Scholar

  30. Harrer T, Harrer E, Kalams SA, et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses. 1996; 12(7):585-592. PubMed | Google Scholar

  31. Mascola JR, Stiegler G, VanCott TC et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med. 2000; 6(2):207-210. PubMed | Google Scholar

  32. Baba TW, Liska V, Hofmann-Lehmann R et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med. 2000; 6(2):200-206. PubMed | Google Scholar

  33. Xiao P, Zhao J, Patterson LJ et al. Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective efficacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol. 2010; 84(14):7161-7173. PubMed | Google Scholar

  34. Neutra MR, Frey A and Kraehenbuhl JP. Epithelial M cells: gateways for mucosal infection and immunization. Cell. 1996; 86(3):345-348. PubMed | Google Scholar

  35. Amerongen HM, Weltzin R, Farnet CM et al. Transepithelial transport of HIV-1 by intestinal M cells: the mechanism of transmission of AIDS. J Acquir Immune Defic Syndr. 1991; 4(8):760-765. PubMed | Google Scholar

  36. Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004; 200(6):749-759. PubMed | Google Scholar

  37. Mehandru S, Tenner-Racz K, Racz P et al. The gastrointestinal tract is critical to the pathogenesis of acute HIV-1 infection. J Allergy Clin Immunol. 2005; 116(2):419-422. PubMed | Google Scholar

  38. Devito C, Hinkula J, Kaul R et al. Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J Acquir Immune Defic Syndr. 2002; 30(4):413-420. PubMed | Google Scholar

  39. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006; 6(2):148-158. PubMed | Google Scholar

  40. Lohman BL, Miller CJ, McChesney MB. Antiviral cytotoxic T lymphocytes in vaginal mucosa of simian immunodeficiency virus-infected rhesus macaques. J Immunol. 1995; 155(12):5855-5860. PubMed | Google Scholar

  41. Lekkerkerker AN, Van Kooyk Y, Geijtenbeek TB. Mucosal-targeted AIDS vaccines: the next generation?. Trends Microbiol. 2004; 12(10):447-450. PubMed | Google Scholar

  42. Iijima H, Takahashi I, Kiyono H. Mucosal immune network in the gut for the control of infectious diseases. Rev Med Virol. 2001; 11(2):117-133. PubMed | Google Scholar

  43. Crotty S, Miller CJ, Lohman BL et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol. 2001; 75(16):7435-7452. PubMed | Google Scholar

  44. Pantaleo G1, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med. 2004; 10(8):806-810. PubMed | Google Scholar

  45. Vaccari M, Trindade CJ, Venzon D, et al. Vaccine-induced CD8+ central memory T cells in protection from simian AIDS. J Immunol. 2005; 175(6):3502-3507. PubMed | Google Scholar

  46. Letvin NL, Mascola JR, Sun Y et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science. 2006; 312(5779):1530-3. PubMed | Google Scholar

  47. Madhavi V, Kent SJ, Stratov I. HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Rev Clin Immunol. 2012; 8(8):767-774. PubMed | Google Scholar

  48. Wren LH, Chung AW, Isitman G et al. Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology. 2013; 138(2):116-123. PubMed | Google Scholar

  49. Chung AW, Isitman G, Navis M et al. Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci U S A. 2011; 108(18):7505-7510. PubMed | Google Scholar

  50. Subbramanian RA, Xu J, Toma E et al. Comparison of human immunodeficiency virus (HIV)-specific infection-enhancing and -inhibiting antibodies in AIDS patients. J Clin Microbiol. 2002; 40(6):2141-2146. PubMed | Google Scholar

  51. Peeters M, Sharp PM. Genetic diversity of HIV-1: the moving target. AIDS. 2000; 14(S3):S129-S140. PubMed | Google Scholar

  52. Ndung'u T, Weiss RA. On HIV diversity. AIDS. 2012; 26(10):1255-1260. PubMed | Google Scholar

  53. Peeters M, Toure-Kane C, Nkengasong JN. Genetic diversity of HIV in Africa: impact on diagnosis, treatment, vaccine development and trials. AIDS. 2003; 17(18):2547-2560. PubMed | Google Scholar

  54. Thomson MM, Perez-Alvarez L and Najera R. Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. Lancet Infect Dis. 2002; 2(8):461-471. PubMed | Google Scholar

  55. Geretti AM. HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis. 2006; 19(1):1-7. PubMed | Google Scholar

  56. Plotkin SA. Complex Correlates of Protection After Vaccination: clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2013; 56(10):1458-1465. Google Scholar

  57. Guthrie BL, de Bruyn G, Farquhar C. HIV-1-discordant couples in sub-Saharan Africa: explanations and implications for high rates of discordancy. Curr HIV Res. 2007; 5(4):416-29. PubMed | Google Scholar

  58. Letvin NL, King NW. Immunologic and pathologic manifestations of the infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Acquir Immune Defic Syndr. 1990; 3(11): 102-104. PubMed | Google Scholar

  59. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013; 435(1):14-28. PubMed | Google Scholar

  60. Sirugo G, Hennig BJ, Adeyemo AA et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet. 2008; 123(6):557-598. PubMed | Google Scholar

  61. Fowke KR, Nagelkerke NJ, Kimani J, et al. Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya. Lancet. 1996; 348(9038):1347-1351. PubMed | Google Scholar

  62. Sobieszczyk ME, Lingappa JR, McElrath MJ. Host genetic polymorphisms associated with innate immune factors and HIV-1. Curr Opin HIV AIDS. 2011; 6(5):427-434. PubMed | Google Scholar

  63. Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J. 2011; 5:35-43. PubMed | Google Scholar

  64. Sheppard HW. Inactivated- or killed-virus HIV/AIDS vaccines. Curr Drug Targets Infect Disord. 2005; 5(2):131-141. PubMed | Google Scholar

  65. Lifson JD, Rossio JL, Piatak M Jr et al. Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res Hum Retroviruses. 2004; 20(7): 772-787. PubMed | Google Scholar

  66. Koff WC, Johnson PR, Watkins DI, et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol. 2006; 7(1):19-23. PubMed | Google Scholar

  67. Learmont JC, Geczy AF, Mills J et al. Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1: a report from the Sydney Blood Bank Cohort. N Engl J Med. 1999; 340(22):1715-1722. PubMed | Google Scholar

  68. Whitney JB and Ruprecht RM. Live attenuated HIV vaccines: pitfalls and prospects. Curr Opin Infect Dis. 2004; 17(1):17-26. PubMed | Google Scholar

  69. Doan LX, Li M, Chen C et al. Virus-like particles as HIV-1 vaccines. Rev Med Virol. 2005; 15(2):75-88. PubMed | Google Scholar

  70. Zhang X, Wang X, Zhao D et al. Design and immunogenicity assessment of HIV-1 virus-like particles as a candidate vaccine. Sci China Life Sci. 2011; 54(11):1042-1047. PubMed | Google Scholar

  71. Chege GK, Shephard EG, Meyers A, et al. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J Gen Virol. 2008; 89(Pt 9):2214-2227. PubMed | Google Scholar

  72. Donnelly JJ, Wahren B and Liu MA. DNA vaccines: progress and challenges. J Immunol. 2005; 175(2):633-639. PubMed | Google Scholar

  73. MacGregor RR, Boyer JD, Ugen KE et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998; 178(1):92-100. PubMed | Google Scholar

  74. Boyer JD, Ugen KE, Wang B et al. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med. 1997; 3(5):526-532. PubMed | Google Scholar

  75. Barnett SW, Rajasekar S, Legg H et al. Vaccination with HIV-1 gp120 DNA induces immune responses that are boosted by a recombinant gp120 protein subunit. Vaccine. 1997; 15(8):869-873. PubMed | Google Scholar

  76. Estcourt MJ, McMichael AJ, Hanke T. DNA vaccines against human immunodeficiency virus type 1. Immunol Rev. 2004; 199:144-155. PubMed | Google Scholar

  77. Hanke T, McMichael AJ, Mwau M et al. Development of a DNA-MVA/HIVA vaccine for Kenya. Vaccine. 2002; 20(15):1995-1998. PubMed | Google Scholar

  78. Wee EG, Patel S, McMichael AJ et al. A DNA/MVA-based candidate human immunodeficiency virus vaccine for Kenya induces multi-specific T cell responses in rhesus macaques. J Gen Virol. 2002; 83(Pt 1):75-80. PubMed | Google Scholar

  79. Monahan SJ, Salgaller ML. Viral vectors for gene transfer into antigen presenting cells. Curr Opin Mol Ther. 1999;1(5):558-564. PubMed | Google Scholar

  80. Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology. 2006; 344(1):230-239. PubMed | Google Scholar

  81. Truckenmiller ME, Norbury CC. Viral vectors for inducing CD8+ T cell responses. Expert Opin Biol Ther. 2004; 4(6):861-868. PubMed | Google Scholar

  82. Wang SW, Bertley FM, Kozlowski PA et al. An SHIV DNA/MVA rectal vaccination in macaques provides systemic and mucosal virus-specific responses and protection against AIDS. AIDS Res Hum Retroviruses. 2004; 20(8):846-859. PubMed | Google Scholar

  83. Berglund P, Quesada-Rolander M, Putkonen P et al. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses. 1997; 13(17):1487-1495. PubMed | Google Scholar

  84. Murphy CG, Lucas WT, Means RE et al. Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol. 2000; 74(17):7745-7754. PubMed | Google Scholar

  85. Matano T, Kano M, Nakamura H et al. Rapid appearance of secondary immune responses and protection from acute CD4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA prime/Sendai virus vector boost regimen. J Virol. 2001; 75(23):11891-11896. PubMed | Google Scholar

  86. Arnold G, Velasco P, Wrin T, et al. Recombinant human rhinovirus displaying the HIV-1 gp41 ELDKWA epitope can elicit broad neutralization of HIV-1 primary isolates. AIDS Vaccine 2005 Conference, Montreal, Canada, 2005. Google Scholar

  87. Roland KL, Tinge SA, Killeen KP et al. Recent advances in the development of live, attenuated bacterial vectors. Curr Opin Mol Ther. 2005; 7(1):62-72. PubMed | Google Scholar

  88. Chujoh Y, Matsuo K, Yoshizaki H et al. Cross-clade neutralizing antibody production against human immunodeficiency virus type 1 clade E and B' strains by recombinant Mycobacterium bovis BCG-based candidate vaccine. Vaccine. 2001; 20(5-6):797-804. PubMed | Google Scholar

  89. Chapman R, Chege G, Shephard E et al. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector. Curr HIV Res. 2010; 8(4):282-298. PubMed | Google Scholar

  90. Paterson Y, Johnson RS. Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert Rev Vaccines. 2004; 3(4 Suppl):S119-S134. PubMed | Google Scholar

  91. Lindberg AA, Pál T. Strategies for development of potential candidate Shigella vaccines. Vaccine. 1993; 11(2):168-179. PubMed | Google Scholar

  92. Xu F, Hong M and Ulmer JB. Immunogenicity of an HIV-1 gag DNA vaccine carried by attenuated Shigella. Vaccine. 2003; 21(7-8):644-648. PubMed | Google Scholar

  93. Chin’ombe N, Ruhanya V. Recombinant Salmonella bacteria vectoring HIV/AIDS Vaccines. The Open Virology Journal. 2013; 6:121-126. PubMed | Google Scholar

  94. Chin'ombe N, Bourn WR, Williamson AL et al. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice. Virology Journal 2009; 6:87. Google Scholar

  95. Chin'ombe N. Recombinant Salmonella enterica Serovar Typhimurium as a Vaccine Vector for HIV-1 Gag. Viruses. 2013; 5(9):2062-2078. PubMed | Google Scholar

  96. Paris RM, Kim JH, Robb ML et al. Prime-boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1. Expert Rev Vaccines. 2010; 9(9):1055-1069. PubMed | Google Scholar

  97. Newman MJ. Heterologous prime-boost vaccination strategies for HIV-1: augmenting cellular immune responses. Curr Opin Investig Drugs. 2002; 3(3):374-378. PubMed | Google Scholar

  98. Yu S, Feng X, Shu T et al. Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B. Vaccine. 2008; 26(48):6124-6131. PubMed | Google Scholar

  99. Koup RA, Roederer M, Lamoreaux L, Fischer J, Novik L, Nason MC, Larkin BD, Enama ME, Ledgerwood JE, Bailer RT, Mascola JR, Nabel GJ, Graham BS; VRC 009 Study Team; VRC 010 Study Team. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One. 2010; 5(2):e9015. PubMed | Google Scholar

  100. Jaoko W, Karita E, Kayitenkore K et al. Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS One. 2010; 5(9):e12873. PubMed | Google Scholar