References

  1. Bouillon R, Prodonova A. Growth and hormone deficiency and peak bone mass. J Pediatr Endocrinol Metab. 2000; 13(6):1327-1336. PubMed | Google Scholar

  2. Cassidy JT, Petty RE. Chronic arthritis in childhood in: Textbook of Pediatric Rheumatology, 5th ed. Cassidy JT, Petty RE (eds). 2005. Philadelphia. Elsevier Saunders.

  3. Singh S. Chronic arthritis: current perspectives (editorial). Indian Pediatr. 2003; 40(5): 393-7. PubMed | Google Scholar

  4. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007; 369(9563): 767-78. PubMed | Google Scholar

  5. Singh S. Collagen vascular disorders, in: Essential Pediatrics, 6th ed. Ghai OP, Gupta P, Paul VK (eds). 2004. New Delhi. CBS Publishers.

  6. Bardare M, Bianchi ML, Furia M, Gandolini GG, et al. Bone mineral metabolism in juvenile chronic arthritis: the influence of steroids. Clin Exp Rheumatol. 1991; 9(6):29-31. PubMed | Google Scholar

  7. K Markula-Patjas, O Mäkitie. Increased body adiposity in severe juvenile idiopathic arthritis. Bone. 2011; 48(2): S263. PubMed | Google Scholar

  8. Bechtold S, Ripperger P, Dalla Pozza R, Schmidt H, et al. Musculoskeletal and functional muscle-bone analysis in children with rheumatic disease using peripheral quantitative computed tomography. Osteoporos Int. 2005; 16(7):757-763. PubMed | Google Scholar

  9. Roth J, Palm C, Scheunemann I, Ranke MB, et al. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004; 50(4):1277-1285. PubMed | Google Scholar

  10. Mul D, van Suijlekom-Smit LW, ten Cate R, Bekkering WP, et al. Bone mineral density and body composition and influencing factors in children with rheumatic diseases treated with corticosteroids. J Pediatr Endocrinol Metab. 2002; 15(2):187-192. PubMed | Google Scholar

  11. Rall LC, Roubenoff R. Rheumatoid cachexia: metabolic abnormalities, mechanisms and interventions. Rheumatology (Oxford). 2004 Oct;43(10):1219-23. PubMed | Google Scholar

  12. Carmen Emanuela Georgescu, Ioana Ilie, Ileana Duncea. Association between body composition and bone mineral density in healthy, non-obese, young Romanian adults and effects of menopause. Maedica (Buchar). 2010; 5(1): 24-27. PubMed | Google Scholar

  13. St-Pierre DH, Faraj M, Karelis AD, et al. Lifestyle behaviours and components of energy balance as independent predictors of ghrelin and adiponectin in young non-obese women. Diabetes Metab. 2006;32(2):131-139. PubMed | Google Scholar

  14. Kanis JA, Johnell O, Oden A, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385-397. PubMed | Google Scholar

  15. MacInnis RJ, Cassar C, Nowson CA, et al. Determinants of bone density in 30- to 65-year-old women: a co-twin study. J Bone Miner Res. 2003;18(9):1650-1656. PubMed | Google Scholar

  16. International League of Associations for Rheumatology. Classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004; 31(2):390-2. PubMed | Google Scholar

  17. Rostom S, Amine B, Bensabbah R, Chkirat B, Abouqal R, Hajjaj-Hassouni N. Psychometric properties evaluation of the childhood health assessment questionnaire (CHAQ) in Moroccan juvenile idiopathic arthritis. Rheumatol Int. 2010; 30 (7):879-85. PubMed | Google Scholar

  18. Ringold S, Yun Chon, and Nora G. Singer. Associations between the American College of Rheumatology Pediatric Response Measures and the Continuous Measures of Disease Activity Used in Adult Rheumatoid Arthritis. Arthritis & Rheumatism. 2009; 60(12): 3776-3783. PubMed | Google Scholar

  19. Viswanath V, Myles A, Dayal R, Aggarwal A. Levels of Serum Matrix Metalloproteinase-3 Correlate with Disease Activity in the Enthesitis-related Arthritis Category of Juvenile Idiopathic Arthritis. J Rheumatol. 2011; 38 (11):2482-7. PubMed | Google Scholar

  20. Tanner JM. Physical growth and development. 1978. Churchill Livingstone. Edinburgh, Scotland. PubMed | Google Scholar

  21. WHO. The WHO Child Growth Standards. 2012. http://www.who.int/childgrowth/standards/en/. Accessed 22 February 2012.

  22. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone. 2008; 43(6): 1115-21. PubMed | Google Scholar

  23. Gordon CM, Baim S, Bianchi ML, et al. Special report on the 2007 Pediatric Position Development Conference of the International Society for Clinical Densitometry. South Med J. 2008; 101(7):740-743. PubMed | Google Scholar

  24. Mäyränpää MK, Helenius I, Valta H, Mäyränpää MI, Toiviainen-Salo S, Mäkitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007; 41 (3):353-9. PubMed | Google Scholar

  25. Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone. 2006 39(3):598-608. PubMed | Google Scholar

  26. Fricke O, Sumnik Z, Tutlewski B, Stabrey A, Remer T, Schoenau E. Local body composition is associated with gender differences of bone development at the forearm in puberty. Horm Res. 2008; 70(2):105-111. PubMed | Google Scholar

  27. Foley S, Quinn S, Jones G. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone. 2009; 44(5):752-757. PubMed | Google Scholar

  28. Janicka A, Wren TA, Sanchez MM, et al. Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab. 2007;92(1):143-147. PubMed | Google Scholar

  29. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone. 2005; 37(4): 474-481. PubMed | Google Scholar

  30. Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547-555. PubMed | Google Scholar

  31. Thomas T, Burguera B. Is leptin the link between fat and bone mass. J Bone Miner Res. 2002;17(9): 1563-1569. PubMed | Google Scholar

  32. akeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305-317. PubMed | Google Scholar

  33. Paulo G Pedreira, Marcelo M Pinheiro and Vera L Szejnfeld. Bone mineral density and body composition in postmenopausal women with psoriasis and psoriatic arthritis. Arthritis Res Ther. 2011 Feb 7;13(1):R16. PubMed | Google Scholar

  34. Högler W, Briody J, Moore B, Lu PW, Cowell CT. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency. Bone. 2005; 37(5):642-650. PubMed | Google Scholar

  35. Eley HL, Russell ST, Tisdale MJ. Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-α and angiotensin II by ß-hydroxy-ß-methylbutyrate. Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1417-26. PubMed | Google Scholar

  36. Walsmith J, Roubenoff R. Cachexia in rheumatoid arthritis. Int J Cardiol. 2002; 85(1):89-99. PubMed | Google Scholar

  37. Mul D, van Suijlekom-Smit LW, ten Cate R, Bekkering WP, de Muinck Keizer-Schrama SM. Bone mineral density and body composition and influencing factors in children with rheumatic diseases treated with corticosteroids. J Pediatr Endocrinol Metab. 2002; 15(2):187-192. PubMed | Google Scholar

  38. Perez MD, Abrams SA, Loddeke L, Shypailo R, Ellis KJ. Effects of rheumatic disease and corticosteroid treatment on calcium metabolism and bone density in children assessed one year after diagnosis, using stable isotopes and dual energy x-ray absorptiometry. J Rheumatol. 2000; 27 (58):38-43. PubMed | Google Scholar

  39. Lien G, Selvaag AM, Flatø B, Haugen M, Vinje O, Sørskaar D, Dale K, Egeland T, Førre. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis Rheum. 2005; 52(3): 833-840. PubMed | Google Scholar

  40. De Schepper J, Derde MP, Van den Broeck M, Piepsz A, et al. Normative data for lum¬bar spine bone mineral content in children: influ¬ence of age, height, weight, and pubertal stage. J Nucl Med. 1991;32(2): 216-220. PubMed | Google Scholar